π/6≤wx+π/3≤2πw+π/3
由标准函数y=sinx的图像可知,上式可变的右端点“2πw+π/3”至少要从2πw+π/3=3π/2开始延伸,才能保证f(x)含有一个最小值点,至多延伸到2πw+π/3=5π/2,否则会出现两个最大值点.
即:3π/2≤2πw+π/3≤5π/2 解出w得:
7/12≤w≤13/12
、
π/6≤wx+π/3≤2πw+π/3
由标准函数y=sinx的图像可知,上式可变的右端点“2πw+π/3”至少要从2πw+π/3=3π/2开始延伸,才能保证f(x)含有一个最小值点,至多延伸到2πw+π/3=5π/2,否则会出现两个最大值点.
即:3π/2≤2πw+π/3≤5π/2 解出w得:
7/12≤w≤13/12
、