证明:若a1>a2>……>an,则1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an

2个回答

  • 若n=2

    左边=1/(a1-a2)+4/(a2-a1)=3

    1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)+n^2/(an-a1)>=0

    即证1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=n^2/(a1-an)

    由柯西不等式

    (a1-a2+a2-a3+...+an-1-an)[1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)]>=(1+2+..+n-1)^2

    即1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=(n(n-1)/2)^2/(a1-an)

    (n(n-1))^2/[4(a1-an)]>=(2^2*n^2)/[4(a1-an)]=n^2/(a1-an)

    所以1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=n^2/(a1-an)

    原不等式得证