设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α3
1个回答
矩阵是(1,1,1; 0,1,1; 0,0,1)
可逆就不用我做了吧?
2σ-σ(-1)直接带入计算就行了
相关问题
在R3中线性变换σ将基α1α2α3变为基β1β2β3
线性代数设向量组(一):α1,α2;(二):α1,α2,α3;(三):α1,α2,α4;(四):α1,α2,α3,α3-
设V是α1,α2,α3.α4 生成的子空间,求V的一组基,并求在该基下向量α= α1+2α+3α3+4α4 的坐标,
设向量组α1,α2,α3,α4线性无关,而向量组β1=α1,β2=α1+α2,β3=α1+α2+α3,β4=α1+α2+
设数域F上向量空间V的向量组{α1 ,α2 ,α3}线性无关,向量β1可由α1 ,α2 ,α
设向量组α1,α2,α3线性无关,证明:向量组α1-a2-2α3,α2-α3,α3也线性无关.
设向量组α1α2α3线性相关,向量组α2α3α4线性无关,问:α4能否由α1α2α3线性表示
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合
设α1,α2,α3与β1,β2,β3都是三维向量空间V的基,且β1=α1,β2=α1+α2,β3=α1+α2+α3,则矩
已知向量组{α1,α2},{α1,α3,α4},{α2,α3}都线性无关,而{α1,α2,α3,α4}线性相关,则向量