解题思路:用分析法证明,结合余弦定理可得结论.
证明:要证明:[1/a+b]+[1/b+c]=[3/a+b+c],
只要证明:[a+b+c/a+b+
a+b+c
b+c]=3,
只要证明:
c
a+b+
a
b+c=1,
只要证明:c(b+c)+a(a+b)=(a+b)(b+c),
即b2=a2+c2-ac,
∵A、B、C成等差数列,
∴B=60°,
∴由余弦定理,得b2=a2+c2-ac.
∴结论成立.
点评:
本题考点: 综合法与分析法(选修).
考点点评: 本题主要考查了等差关系、余弦定理的应用和解三角形问题.考查了学生综合分析问题和基本的运算能力.