(1)先求sina取正的再代入,自己带吧
(2)化简cos(π/3+α)+sin(π/6+α)=cos(π/3+α)+cos[π/2-(π/6+α)]
=cos(π/3+α)+cos(π/3-α)
=cosπ/3casα-sinαsinπ/3+cosπ/3casα+sinαsinπ/3
=2cosπ/3casα=casα
(3)[(1+cos20°)/2sin20°]-sin10°(1/tan5°-tan5°)
=[(1+cos20°)/2sin20°]-sin10°(cot5°-tan5°)
=[(1+cos20°)/4sin10°cos10°]-sin10°(cot5°-tan5°)
=(2cos10°/4sin10°)-2sin5°cos5°(cot5°-tan5°)
=(cos10°/2sin10°)-2((cos5°)^2-(sin5°)^2)
=(cos10°/2sin10°)-2cos10°
=(cos10°-4sin10°cos10°)/2sin10°
=(sin80°-2sin20°)/2sin10°
=((sin80°-sin20°)-sin20°)/2sin10°
=(2cos50°sin30°-sin20°)/2sin10°
=(sin40°-sin20°)/2sin10°
={2cos30°sin10°)/2sin10°
=cos30°
=(根号3)/2
(4)tan2α直接用公式,sina+根3分之一,cosa=根下(2/3)带入求sin(2α+π/3)
(5)sin163sin223+sin253sin313
=sin(180-17)sin(180+43)+sin(180+73)sin(360-47)
=-sin17sin43+sin73sin47
=-cos73sin43+sin73cos43
=sin(73-43)
=sin30
=1/2
(6)tan(α+π/4)=1/7展开(tana+1)/(1-tana))=1/7
解tana=-3/4推出sina=3/5,cosa=-4/5