对x^3-y^3-z^3因式分解得:(x-y)(x^2+xy+y^2)-z^3
由已知得:x^2-y^2=z^2
所以:z^3=z*z^2=z(x^2-y^2)=z(x-y)(x+y)
故 (x-y)(x^2+xy+y^2)-z^3
=(x-y)(x^2+xy+y^2)-z(x-y)(x+y)
=(x-y)(x^2+xy+y^2-xz-yz)
=(x-y)[x(x-z)+y(x-z)]
=(x-y)(x-z)(x+y)
与等式右边比较可知:A=x+y
对x^3-y^3-z^3因式分解得:(x-y)(x^2+xy+y^2)-z^3
由已知得:x^2-y^2=z^2
所以:z^3=z*z^2=z(x^2-y^2)=z(x-y)(x+y)
故 (x-y)(x^2+xy+y^2)-z^3
=(x-y)(x^2+xy+y^2)-z(x-y)(x+y)
=(x-y)(x^2+xy+y^2-xz-yz)
=(x-y)[x(x-z)+y(x-z)]
=(x-y)(x-z)(x+y)
与等式右边比较可知:A=x+y