f(x)=x的3次方-3x+1
f'(x)=3x^2-3
令f’(x)=0
则x=1或x=-1
即f(x)在[-3,-1]上单增,在[-1,0]上单减
则f(x)max=f(-1)=3
f(-3)=-17 f(0)=1
则f(x)min=f(-3)=-17
最大值与最小值之差=3-(-17)=20
f(x)=x的3次方-3x+1
f'(x)=3x^2-3
令f’(x)=0
则x=1或x=-1
即f(x)在[-3,-1]上单增,在[-1,0]上单减
则f(x)max=f(-1)=3
f(-3)=-17 f(0)=1
则f(x)min=f(-3)=-17
最大值与最小值之差=3-(-17)=20