三角函数的定积分问题∫(上限为2,下限为-2)√(4-x^2)再乘以(sinx+1)dx,该题根号里面的式子能不能用令X

1个回答

  • 可以,不过先用奇偶性不是更快一点吗?

    ∫(- 2→2) √(4 - x²)(sinx + 1) dx

    = ∫(- 2→2) √(4 - x²)sinx dx + ∫(- 2→2) √(4 - x²) dx,前奇后偶

    = 0 + 2∫(0→2) √(4 - x²) dx

    = 2∫(0→2) √(4 - x²) dx

    令x = 2sint,dx = 2cost dt

    x = 0 ==> t = 0

    x = 2 ==> sint = 1 ==> t = π/2

    = 2∫(0→π/2) √(4 - 4sin²t)(2cost dt)

    = 2∫(0→π/2) (2cost)² dt

    = 8∫(0→π/2) (1 + cos2t)/2 dt

    = 4∫(0→π/2) (1 + cos2t) dt

    = 4[t + (1/2)sin2t] |(0→π/2)

    = 4(π/2 + 0)

    = 2π