a+b=1,比较M=x²+y² 与N=(ax+by)² +(bx+ay)²的大小

1个回答

  • 由a+b=1,可得a²+b²=(a+b)²-2ab=1-2ab

    因此,N=(ax+by)² +(bx+ay)²

    =(a²x²+2abxy+b²y²)+(b²x²+2abxy+a²y²)

    =(a²+b²)x²+(a²+b²)y²+4abxy

    =(1-2ab)x²+(1-2ab)y²+4abxy

    =x²+y²-2abx²2-2aby²+4abxy

    =x²+y²-2ab(x-y)²

    于是,M-N=(x²+y² )-[x²+y²-2ab(x-y)²]=2ab(x-y)²

    若a,b均为正数,则M-N≥0,即M≥N,当且仅当x=y时等号成立;

    若a,b一正一负,则M-N≤0,即M≤N,当且仅当x=y时等号成立;

    若a=0,b=1或a=1,b=0,则M=N.