若sin[α-(2n+1)π/2]=3/5,α∈(0,π/2)∪(π/2,π),则tanα+1/tanα=?
2个回答
若n为奇数,则
sin[x-(2n+1)pai/2]=sin(x+pai/2)=cosx=3/5;xpai/2;tanx=-4/3;
此时答案为-25/12
相关问题
已知f(α)=sin(π-α)cos(2π-α)tan(-α+3π/2)tan(-α-π) /sin(-π-α).(1)
(1+tanα)/(1-tanα)=3+2√2,求cos^2(π-α)+sin(π+α)*cos(π-α)+2sin(α
已知:f(α)=sin(π2−α)•cos(3π2−α)•tan(5π+α)tan(−α−π)•sin(α−3π)
已知f(α)=sin(α−π2)cos(3π2−α)tan(2π−α)tan(−α−π)sin(π+α).
tan(π-α)*sin^2(α+π/2)*cos(2π-α)/cos^3(-α-π)*tan(2π-α) sin^2就
已知f(α)=sin2(π−α)•cos(2π−α)•tan(−π+α)sin(−π+α)•tan(−α+3π).
已知f(α)=sin2(π−α)•cos(2π−α)•tan(−π+α)sin(π+α)•tan(−α+3π),
化简:(1)tan(π−α)•sin2(α+π2)•cos(2π−α)cos3(−π−α)•tan(α−2π);(2)s
急,已知f(α)=sin(π/2-α)cos(2π-α)tan(-α+3π)/tan(π+α)sin(π/2+α)
若tanα+[1/tanα]=[10/3],α∈([π/4],[π/2]),则sin(2α+[π/4])的值为_____