∠A=90°,∠B=60°,AC=根号3,AB=1
BC=根号(AB^2+AC^2)=根号(1+3)=2
做AD⊥BC于D
AD×BC=AB×AC
AD=AB×AC/BC=1×根号3/2=根号3/2
∵BC在x轴上,
∴|yA| = |AD| = 根号3/2,yA=±根号3/2
A在y=根号3 /x 上
∴±根号3/2 = 根号3/xA
xA=±2
又|CD| = |AC|cos30° = 根号3*根号3/2=3/2
xC=xA±|CD| = ±2 ±3/2 = -7/2,-1/2,1/2,7/2
即C点坐标:(-7/2,0);或(-1/2,0);或(1/2,0);或(7/2,0)