根据平均数和方差的定义可知
[(x1-2)+(x2-2)+...+(xn-2)]/n=10
则有
[(x1+3)+(x2+3)+...+(xn+3)]/n
=[(x1-2+5)+(x2-2+5)+...+(xn-2+5)]/n
=[(x1-2)+(x2-2)+...+(xn-2)+5n]/n
=10+5
=15
[(x1+3-15)²+(x2+3-15)²+...+(xn+3-2)²]/n
=[(x1-2-10)²+(x2-2-10)²+...+(xn-2-10)²]/n
=24
xn+3的平均数是15,方差不变,依然是24~
原题的方差应该是2.4,不是24
都一样的,方差不变,平均数是15,选B