如图,抛物线y=ax2+bx-3与x轴交于A(-1,0)、B两点,与y轴交于点C,S△ABC=6 (1)求抛物线解析式

2个回答

  • 将x=0代入y=ax2+bx-3 = -3,故C(0,-3)

    令B(x,0)、S△ABC=6,即:3(x+1)/2=6,x=3;

    将A(-1,0)、B(3,0)代入y=ax2+bx-3,得a=1,b= -2

    (1)抛物线解析式y=x²-2x-3 .

    令D(X,Y),因BC⊥BD,故:(3/3)*Y/(X-3) = -1,

    直线CD:y=(Y+3)x/X -3,与抛物线y=x²-2x-3交点P(2 + (Y+3)/X,[(Y+3)/X]²+2(Y+3)/X -3);

    由C(0,-3)、D(X,Y),P为CD中点知:P(X/2,(Y-3)/2)

    故:X/2 = 2 + (Y+3)/X

    (Y-3)/2 = [(Y+3)/X]²+2(Y+3)/X -3

    得出XY,即可求出P(X/2,(Y-3)/2)