这个题目考查的是复合函数的单调性问题:对于符合函数的单调性,记住这么一句话“同增异减”;意思就是当有这么一个复合函数y=f(x)*g(x);当f(x)和g(x)的单调性相同时,函数y才是单调增函数.
回到这个题目:f(x)=(-2ax+a+1)e^x ;
(1)当a!=0时:我们可以看成f(x)=g(x)*m(x):g(x)=-2ax+a+1,m(x)=e^x
根据指数函数和一次函数的性质可以知道m(x)在R内是一个单调增函数而当0
这个题目考查的是复合函数的单调性问题:对于符合函数的单调性,记住这么一句话“同增异减”;意思就是当有这么一个复合函数y=f(x)*g(x);当f(x)和g(x)的单调性相同时,函数y才是单调增函数.
回到这个题目:f(x)=(-2ax+a+1)e^x ;
(1)当a!=0时:我们可以看成f(x)=g(x)*m(x):g(x)=-2ax+a+1,m(x)=e^x
根据指数函数和一次函数的性质可以知道m(x)在R内是一个单调增函数而当0