函数f(xy,x+y)=x^2+xy+y^2,则df(x,y)=?
1个回答
因为f(xy,x+y)=x^2+y^2+xy=(x+y)^2-xy
所以函数f(xy,x+y)=x^2+y^2+xy可变换为f(x,y)=y^2-x
相关问题
f(xy,x-y)=x^2+3xy+y^2,则f(x,y)=?
设f(x+y,xy)=x^2+y^2,则f(x,y)
设F(xy,y^2/x)=x^2+y^2,求F(y^2/x,xy)
已知x-y=3xy,则[2x+3xy−2y/x−2xy−y]=______.
x+y=5,xy=-3,则x^2y+xy^2=____x^2+y^2=________
Z=F(xy,x-y)=x^2+y^2,则dz=
若xy/x+y=2,则3x-xy+3y/-x+3xy-y=
已知x-xy=20,xy-y=-10,则x-y=?,x+y-2xy?
已知(x+y)²=3,(x-y)²=,则[(xy+2)(xy-2)-2x²y²+
如果x2+xy=2,xy+y2=-1,则x2-y2=______,x2+2xy+y2=______.