3/(1!+2!+3!)+4/(2!+3!+4!)+...+2000/(1998!+1999!+2000!)

2个回答

  • 先看通项:

    (n+2)/[n!+(n+1)!+(n+2)!]

    =(n+2)/[n!(1+n+1)+(n+2)(n+1)!]

    =(n+2)/{(n+2)[n!+(n+1)!]}

    =1/[n!+(n+1)!]

    =1/[(n+2)n!]

    =(n+1)/[(n+1)(n+2)n!]

    =[(n+2)-1]/(n+2)!

    =1/(n+1)!-1/(n+2)!

    3/(1!+2!+3!)=1/2!-1/3!

    4/(2!+3!+4!)=1/3!-1/4!

    ……

    2000/(1998!+1999!+2000!)=1/1999!-1/2000!

    以上各式相加,右面中间项交叉相消

    ∴原式=1/2!-1/2000!=1/2-1/2000!