原方程即:
4x/[(x-2)(x+2)]-2(x+3)/[(x+3)(x-2)]=1-(x-3)/[(x-3)(x+2)]
化简后得:
4x/[(x-2)(x+2)]-2/(x-2)=(x+1)/(x+2)
两边乘以(x-2)(x+2)得:
(x-1)(x-2)=0
即 x=1 或 x=2
原方程即:
4x/[(x-2)(x+2)]-2(x+3)/[(x+3)(x-2)]=1-(x-3)/[(x-3)(x+2)]
化简后得:
4x/[(x-2)(x+2)]-2/(x-2)=(x+1)/(x+2)
两边乘以(x-2)(x+2)得:
(x-1)(x-2)=0
即 x=1 或 x=2