设bn=4/(4n-3)(4n-1) ,Tn为其前n项和,求证Tn
2个回答
n=4/(4n-3)(4n-1)
b1=4/3>1
tn
相关问题
等差数列{an}前n项和Sn,{bn}前n项和Tn,有Sn/Tn=(4n+1)/(3n-
数列an=4n-3,bn=1/(an·a(n+1),Tn为数列{bn}前n-1项和,求Tn.
设数列an的前n项和为Sn,且Sn=n*n-4n+4.设数列bn=an/2n,bn的前n项和为Tn,求证:1/4小于等于
数列{bn}的前n项和为Tn,且Tn满足Tn+1/(4n+1)=Tn/(4n-3)+1,设定b1的值使得数列{bn}是等
an=4n-2,设bn=2/{(2n+1)an},求bn的前n项和Tn,并证明Tn≥1/3
an=2n-1, 设bn=1/[an*a(n+1)],前n项和为Tn,求证Tn<1/2
设等差数列{an}的前n项和为Sn,等差数列{bn}的前n项和为Tn,若Tn\Sn=4n+27\7n+1,求bn\an
sn为.{4^n-2^n}前n项和,bn=2^n/sn求{bn}前n项和Tn
等差数列{an}{bn},前n项和分别为Sn,Tn,Sn/Tn=n+4/4n+3,则a5/b5=?
Tn为Cn的前n项和.Cn=3/13*2^(n-1)-1 求证:Tn〈4/7