Gn=a(r^n-1)/(r-1)
Sn=(1/(r-1))(a(r+r^2+r^3+...+r^n)-(a+a+a+...+a))
=(1/(r-1))(a(r^n-1)/(r-1)-na)=(a/(r-1)^2)(r^n-1-n(r-1))
An=a+(1/2)n(n-1)d
(An/n)-Sn=(a/n)+(1/2)(n-1)d)-(a(r^n/(r-1)^2)+(1/(r-1)^2)+(a*n/(r-1))
n趋向于无穷大
=(1/2)nd-(d/2)+(1/(r-1)^2)+(a*n/(r-1))
=n*((d/2)+(a/(r-1))+(1/(r-1)^2)-(d/2)
=a
所以:
(d/2)+(a/(r-1))=0
(1/(r-1)^2)-(d/2)=a
a(1-r)^2+a(1-r)-1=0
1-r=((a^2+4a)^(1/2)-a)/(2a)
r=1-((a^2+4a)^(1/2)-a)/(2a)