解题思路:根据∠B,∠C的平分线相交于点O,可得出∠OBD=∠OBC,∠OCE=∠OCB,再由DE∥BC,得出∠DOB=∠OBC,∠EOC=∠OCB,从而得出∠OBD=∠DOB,∠EOC=∠ECO,则OD=BD,OE=CE,从而得出DE=BD+EC.
∵∠B,∠C的平分线相交于点O,
∴∠OBD=∠OBC,∠OCE=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠OBD=∠DOB,∠EOC=∠ECO,
∴OD=BD,OE=CE,
∴DE=OD+OE=BD+EC,
∵BD+EC=14,
∴DE=14.
故选:C.
点评:
本题考点: 等腰三角形的判定与性质;平行线的性质.
考点点评: 本题考查了角平分线性质、平行线性质、以及等角对等边的性质等.进行线段的等量代换是正确解答本题的关键.