y=x+b代入得到x^2+2bx+b^2-4x=0
x^2+(2b-4)x+b^2=0
判别式=(2b-4)^2-4b^2=0
4b^2-16b+16-4b^2=0
b=1
e=c/a=根号2/2
即有c^2/a^2=1/2
(a^2-b^2)/a^2=1/2
1-1/a^2=1/2
a^2=2
故椭圆方程是x^2/2+y^2=1
y=x+b代入得到x^2+2bx+b^2-4x=0
x^2+(2b-4)x+b^2=0
判别式=(2b-4)^2-4b^2=0
4b^2-16b+16-4b^2=0
b=1
e=c/a=根号2/2
即有c^2/a^2=1/2
(a^2-b^2)/a^2=1/2
1-1/a^2=1/2
a^2=2
故椭圆方程是x^2/2+y^2=1