证明:
原式=[(x-y)^2+2xy]/(x-y)
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0 ∴x-y>0
所以(x-y)+2/(x-y) >=2√[(x-y)*2/(x-y)]=2√2