求不定积分∫dx/(x^2+1)(x^2+x+1)

2个回答

  • 1/[(x^2+1)(x^2+x+1)] = (a1x+a0)/(x^2+1) + (b1x+b0)/(x^2+x+1)

    1=(a1x+a0)(x^2+x+1)+(b1x+b0)(x^2+1)

    coef.of x^3

    a1+b1=0 (1)

    put x=0

    a0+b0=1 (2)

    coef.of x

    a0+a1+b1= 0

    a0=0 (a1+b1=0)

    coef.of x^2

    a0+a1+b0=0

    a1=-1 (a0+b0=1)

    b0=1

    b1=1

    1/[(x^2+1)(x^2+x+1)] = -x/(x^2+1) + (x+1)/(x^2+x+1)

    ∫dx/[(x^2+1)(x^2+x+1)]

    =∫ [-x/(x^2+1) + (x+1)/(x^2+x+1)] dx

    = -(1/2) ln(x^2+1) + (1/2)ln(x^2+x+1) + (1/2)∫ dx/(x^2+x+1)

    x^2+x+1 = (x+1/2)^2 + 3/4

    let

    x+1/2 =(√3/2)tana

    dx = (√3/2) (seca)^2 da

    ∫ dx/(x^2+x+1)

    = 2√3/3 ∫ da

    =2√3/3 arctan(x+1/2) + C'

    ∫dx/[(x^2+1)(x^2+x+1)]

    = -(1/2) ln(x^2+1) + (1/2)ln(x^2+x+1) + (1/2)∫ dx/(x^2+x+1)

    =-(1/2) ln(x^2+1) + (1/2)ln(x^2+x+1) + (√3/3) arctan(x+1/2) + C