1.A可化为Jordan形矩阵,再把每个根子空间的基的顺序倒转即可.
2.由代数基本定理知A有n个特征根.另一方面,把A化成Jordan形矩阵,则f(A)是下三角矩阵,它的对角元为f(λ1),f(λ2),...,f(λn),所以f(λ1),f(λ2),...,f(λn)为f(A)的全部特征根.
1.A可化为Jordan形矩阵,再把每个根子空间的基的顺序倒转即可.
2.由代数基本定理知A有n个特征根.另一方面,把A化成Jordan形矩阵,则f(A)是下三角矩阵,它的对角元为f(λ1),f(λ2),...,f(λn),所以f(λ1),f(λ2),...,f(λn)为f(A)的全部特征根.