抛物线y方=4px(p>0)准线与x轴交于M,过M做直线L与抛物线交于A,B两点,求AB中点P的轨迹 速求

1个回答

  • 用点差法+共线,易知准线为方程:x=-p,则M(-p,0)设A(x1,y1),B(x2,y2),AB中点P(x,y)得x1+x2=2x,y1+y2=2y,A,B在y^2=4px上得:y1^2=4px1,y2^2=4px2,显然AB斜率k存在,两式相减得:k=(y1-y2)/(x1-x2)=4p/(y1+y2)=2p/y,又A,B,M,P共线得其斜率也可表示为k=y/(x+p)=2p/y,即得y^2=2px+2p^2,(p>0,x>0),即为AB中点P轨迹方程.仅参考哈.