1、在已知等式中,取 x=y=2 得 4f(4)=2f(2)+2f(2)=4f(2) ,
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .