lim (cosx)^ln(1/1+x^2)怎么算
1个回答
lim[x→0] (cosx)^ln[1/(1+x²)]
=(cos0)^ln[1/(1+0)]
=1^ln1
=1^0
=1
相关问题
1、lim ln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx
lim(x→0) (ln cosx)/[ln(1+x^2)] 等于多少?
lim/x-0(cosx)/ln(1+x^2)求极限
Lim(2^x-1)/x=ln2(x趋于0),怎么算出来的?
lim(x趋于0)(1-cosx)/[ln(1+x)(e^x-1)]
lim(x->0)[cosx-e^(-x^2/2)]/[x^2[x+ln(1-x)]]
x→0时lim(1-cosx/sin2x×ln(1+3x))
lim(x→0)(1-cosx)[x-ln(1+tanx)]/(sinx)^4
lim x→0[ln(cosx)]/x^2
求极限lim(1-cos(1-cosX))/(sinx^2*ln(1+x^2))有图.