数列题啊?!SOS 急!5.设正项等比数列{an} 的首项a1=1/2 ,前n项和为sn ,且2的10次方*S30-(2

1个回答

  • (I)设公比为q(q不=0)

    2^10*S30-(2^10+1)*S20+S10

    =2^10*(S30-S20)+S10-S20

    =2^10*q^10(S20-S10)-(S20-S10)

    =0

    又因为S20-S10不=0

    所以2^10*q^10-1=0

    (2q)^10=1

    q=0(舍去)或1/2或-1/2(因为an为正,舍去)

    q=1/2

    an=a1*q^(n-1)=(1/2)^n

    (II)Sn=a1*[1-q^(n-1)]/(1-q)

    =1-(1/2)^(n-1)

    nSn=n-n(1/2)^(n-1)

    设其前n项和为Tn

    Tn=1S1+2S2+3S3+…+nSn

    =1-(1/2)^0+2-2*(1/2)^1+3-3*(1/2)^2+…+n-n(1/2)^(n-1)

    =(1+2+3+…+n)-(1/2)^0-2*(1/2)^1-…-n*(1/2)^(n-1) (1)

    (1/2)Tn=(1/2)*(1+2+3+…+n)-(1/2)^1-2(1/2)^2-(n-1)*(1/2)^(n-1)-n*(1/2)^n (2)

    (1)-(2)得

    (1/2)Tn=(1/2)*(1+2+3+…+n)-(1/2)^0-(1/2)^1-(1/2)^2-…-(1/2)^(n-1)+n*(1/2)^n

    =(1/2)*[n+n*(n-1)/2]-{1*[1-(1/2)^n]/[1-(1/2)]}+n*(1/2)^n

    所以Tn=n+(n^2-n)/2-4+4*(1/2)^n+2n*(1/2)^n

    =n/2+n^2/2+(2n-4)*(1/2)^n-4