最小正周期T=2π/(2w)=π/2,所以w=2
于是f(x)=sin(4x-π/6)+1/2
令2kπ-π/2≤4x-π/6≤2kπ+π/2
那么kπ/2-π/12≤x≤kπ/2+π/6
所以f(x)的单调递增区间为[kπ/2-π/12,kπ/2+π/6] (k∈Z)
最小正周期T=2π/(2w)=π/2,所以w=2
于是f(x)=sin(4x-π/6)+1/2
令2kπ-π/2≤4x-π/6≤2kπ+π/2
那么kπ/2-π/12≤x≤kπ/2+π/6
所以f(x)的单调递增区间为[kπ/2-π/12,kπ/2+π/6] (k∈Z)