E-AB 可逆怎么 证明E-BA 3Q

2个回答

  • 证法1 构造矩阵 E B A E 首先第二行的矩阵右乘-B,加到第一行,得到矩阵 E-AB 0 A E 可见这个矩阵是满秩的 再回到原来的矩阵左乘-B加到第一行的矩阵,就可以证明E-BA也可逆证法2 E-AB可逆,则设其逆为C 有(E-AB)C=E ->B(E-AB)CA=BA -> BCA-BABCA-BA+E=E (两边多配了一个E) -> (E-BA)BCA +(E-BA)=E ->(E-BA)(BCA+E)=E 以上全是恒等变型,可求出E-BA的逆的具体表示证法3 反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0 (方和有非零解) -> X=BAX ,则(E-AB)AX=AX-ABAX=AX-AX=0 也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾,所以E-BA可逆,但这种证法不能求其逆的具体表示证法4 证明AB与BA有相同特征值 查看原帖