两函数图象相交部位在第一象限.x≥0 y≥0 y^2=x y=√x
先求交点:
y^2=x
y=x^2
x=0 y=0或x=1 y=1
S=(0 1)∫(√x-x^2)dx
=(2/3)x^(3/2)-(1/3)x^3|(0 1)
=(2/3)-(1/3)
=1/3
就是先判断边界,再求定积分.
两函数图象相交部位在第一象限.x≥0 y≥0 y^2=x y=√x
先求交点:
y^2=x
y=x^2
x=0 y=0或x=1 y=1
S=(0 1)∫(√x-x^2)dx
=(2/3)x^(3/2)-(1/3)x^3|(0 1)
=(2/3)-(1/3)
=1/3
就是先判断边界,再求定积分.