解析:
f(x)=根号3*sin(2x-30°)+2sin²(x-15°)
=根号3*sin(2x-30°)+1-cos(2x-30°)
=2[根号3/2 *sin(2x-30°) -1/2 *cos(2x-30°)] +1
=2sin(2x-30°-30°) +1
=2sin(2x-60°) +1
则可知函数的最小正周期T=2π/2=π
解析:
f(x)=根号3*sin(2x-30°)+2sin²(x-15°)
=根号3*sin(2x-30°)+1-cos(2x-30°)
=2[根号3/2 *sin(2x-30°) -1/2 *cos(2x-30°)] +1
=2sin(2x-30°-30°) +1
=2sin(2x-60°) +1
则可知函数的最小正周期T=2π/2=π