a1=s1=2
an=sn-s(n-1)=n²+n -[(n-1)²+n-1]=2n n为正整数
2)
Bn=(1/2)^an+n
Tn=B1+B2+……Bn= (1/2)^2+1+(1/2)^4+2+(1/2)^6+3+……+(1/2)^2n+n
=(1/2)^2[1+(1/2)^2+(1/2)^4+……(1/2)^(2n-2)]+(1+2+3+……+n)
=1/4[4/3 (1-(1/2)^2n]+n(n+1)/2
=1/3[1-(1/2)^2n]+n(n+1)/2
a1=s1=2
an=sn-s(n-1)=n²+n -[(n-1)²+n-1]=2n n为正整数
2)
Bn=(1/2)^an+n
Tn=B1+B2+……Bn= (1/2)^2+1+(1/2)^4+2+(1/2)^6+3+……+(1/2)^2n+n
=(1/2)^2[1+(1/2)^2+(1/2)^4+……(1/2)^(2n-2)]+(1+2+3+……+n)
=1/4[4/3 (1-(1/2)^2n]+n(n+1)/2
=1/3[1-(1/2)^2n]+n(n+1)/2