f(x)=3x/(x^2+x+1)=3x/[(x-1/2)^2+3/4]
x>0时,f(x)>0
令f(x)=3x/(x^2+x+1)=m
mx^2+(m-3)x+m=0
判别式=(m-3)^2-4m*m≥0
3m^2+6m-9≤0
(m+3)(m-1)≤0
-3≤m≤1,即:
-3≤f(x)≤1
又:f(x)>0,所以:
0<f(x)≤1
值域(0,1]
f(x)=3x/(x^2+x+1)=3x/[(x-1/2)^2+3/4]
x>0时,f(x)>0
令f(x)=3x/(x^2+x+1)=m
mx^2+(m-3)x+m=0
判别式=(m-3)^2-4m*m≥0
3m^2+6m-9≤0
(m+3)(m-1)≤0
-3≤m≤1,即:
-3≤f(x)≤1
又:f(x)>0,所以:
0<f(x)≤1
值域(0,1]