2^[a(n+1)]-2^[a(n)]=3,
2^[a(n)]-2^[a(n-1)]=3,
...
2^[a(2)]-2^[a(1)]=3,
上面n个等式相加,有
2^[a(n+1)]-2^[a(1)]=3n,
2^[a(n+1)]=3n+2,
a(n+1)=log_{2}[3n+2],
又,a(1)=1,
所以,通项公式为,
a(n)=log_{2}[3n-1],n=1,2,...
2^[a(n+1)]-2^[a(n)]=3,
2^[a(n)]-2^[a(n-1)]=3,
...
2^[a(2)]-2^[a(1)]=3,
上面n个等式相加,有
2^[a(n+1)]-2^[a(1)]=3n,
2^[a(n+1)]=3n+2,
a(n+1)=log_{2}[3n+2],
又,a(1)=1,
所以,通项公式为,
a(n)=log_{2}[3n-1],n=1,2,...