三角函数问题1.分子是sin50°(1+根号3倍tan10°)-cos20° 分母是cos80°根号下1-cos20°

3个回答

  • 1.[sin50°(1+根号3倍tan10°)-cos20°]/[cos80°根号下1-cos20°]

    ={2sin50°[(1/2)cos10°+(√3/2)sin10°]/cos10°-cos20°}/[sin10°√2*√(sin10°)^2]

    =[(2cos40°sin40°)/cos10°-cos20°]/[√2sin10°*sin10°]

    =(sin80°/sin80°-cos20°)/[√2(sin10°)^2]

    =(1-cos20°)/[√2(sin10°)^2]

    =2(sin10°)^2/[√2(sin10°)^2]

    =√2

    2.6sin²α+sinαcosα-2cos²α=0

    (3sinα+2cosα)(2sinα-cosα)=0

    ∵α∈(π/2,π)

    ∴sinα>0 cosα0

    ∴3sinα+2cosα=0

    3sinα=-2cosα

    平方9sin²α=4cos²α=4-4sin²α

    解得sinα=2/√13 cosα=-3/√13

    sin2α=2sinαcosα=-12/13 cos2α=1-2sin²α=5/13

    所以sin(2α+π/3)=sin2αcos(π/3)+cos2αsin(π/3)

    =(-12/13)*(1/2)+(5/13)*(√3/2)

    =(5√3-12)/26

    3.cos2α=2cos²α-1=7/25

    cos²α=16/25

    cosα=±4/5

    sin(α-π/4)=sinαcos(π/4)-cosαsin(π/4)=7√2/10

    cosα=4/5时 (√2/2)sinα=7√2/10+(√2/2)*(4/5)

    sinα=7/5+4/5>1不成立

    所以cosα=-4/5

    (√2/2)sinα=7√2/10+(√2/2)(-4/5)

    解得sinα=3/5

    tanα=sinα/cosα=-3/4

    所以tan(a+π/3)=[tana+tan(π/3)]/[1-tanatan(π/3)]

    =(-3/4+√3)/[1-√3(-3/4)]

    =(25√3-48)/11