(1)∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,
∴∠ABG=∠ADE,
在△ABG和△C′DG中,
∵
,
∴△ABG≌△C′DG;
(2)∵由(1)可知△ABG≌△C′DG,
∴GD=GB,
∴AG+GB=AD,
设AG=x,则GB=8﹣x,
在Rt△ABG中,
∵AB 2+AG 2=BG 2,即6 2+x 2=(8﹣x) 2,
解得x=
,
∴tan∠ABG=
=
=
;
(3)∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=
AD=4,
∴tan∠ABG=tan∠ADE=
,
∴EH=HD×
=4×
=
,
∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位线,
∴HF=
AB=
×6=3,
∴EF=EH+HF=
+3=
。