10001以内,除以3余2,除以7余3,除以11余4的数有几个?

1个回答

  • N=a*3+2

    N=b*7+3

    N=c*11+4

    N+18=b*7+3+18=b*7+21 .能被7整除

    N+18=c*11+4+18=c*11+22 .能被11整除

    N+18=a*3+2+18=3a+23 .不能被3整除

    再加个(11和7的公倍数77)得:

    N+18+77=b*7+3+18+77=b*7+21+77 .能被7整除

    N+18+77=c*11+4+18+77=c*11+22+77 .能被11整除

    N+18+77=a*3+2+18+77=3a+97 .不能被3整除

    再加个(11和7的公倍数77)得:

    N+18+77*2=b*7+3+18+77*2=b*7+21+77*2 .能被7整除

    N+18+77*2=c*11+4+18+77*2=c*11+22+77*2 .能被11整除

    N+18+77*2=a*3+2+18+77*2=3a+174 .能被3整除

    因此N+18+77*2能倍3,7,11整除.

    3,7,11的最小公倍数为:231

    因此最小的N满足:

    N+18+77*2=231

    N=59

    10001/231=43.68

    68>59

    因此共有44个.

    分别是:

    59,59+231=290,59+2*231,59+3*231=521,.,59+43*231=9992