求微分方程xy''+y'=0的通解(提示:可降阶)
xdy'/dx=-y'==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│ (C1是积分常"}}}'>

2个回答

  • 解法一:∵xy''+y'=0 ==>xdy'/dx=-y'

    ==>dy'/y'=-dx/x

    ==>ln│y'│=-ln│x│+ln│C1│ (C1是积分常数)

    ==>y'=C1/x

    ==>y=C1ln│x│+C2 (C2是积分常数)

    ∴原方程的通解是y=C1ln│x│+C2 (C1,C2是积分常数);

    解法二:∵令t=ln│x│,则xy'=dy/dt,x²y''=d²y/dt²-dy/dt

    代入原方程得 d²y/dt²-dy/dt+dy/dt=0

    ==> d²y/dt²=0

    ==>dy/dt=C1 (C1是积分常数)

    ==>y=C1t+C2 (C2是积分常数)

    ==>y=C1ln│x│+C2

    ∴原方程的通解是y=C1ln│x│+C2 (C1,C2是积分常数).