(x1)^2+(x2)^2=(x1+x2)^2-2x1x2
根据韦达定理,x1+x2=-b/a=- -2k/1=2k,x1x2=c/a=1-k^2
(x1+x2)^2-2x1x2=4k^2-2+2k^2=6k^2-2
Δ=4k^2-4*1*(1-k^2)=8k^2-4≥0,k^2≥1/2
将k^2=1/2代入6k^2-2得最小值是1
(x1)^2+(x2)^2=(x1+x2)^2-2x1x2
根据韦达定理,x1+x2=-b/a=- -2k/1=2k,x1x2=c/a=1-k^2
(x1+x2)^2-2x1x2=4k^2-2+2k^2=6k^2-2
Δ=4k^2-4*1*(1-k^2)=8k^2-4≥0,k^2≥1/2
将k^2=1/2代入6k^2-2得最小值是1