f(x)=2sin(2x+π/6)+sin(2x-π/6)+cos2x+a 最大值为1,(1)求a,(2)求使f(x)〉
1个回答
f(x)=2(sin2xcosπ/6+cos2xsinπ/6)+sin2xcosπ/6cos-cos2xsinπ/6+cos2x+a
=3sin(2x+π/6)+a
最大值是1,那么a=-2
相关问题
已知函数f(x)=sin(2x+[π/6])+sin(2x-[π/6])+cos2x+a的最大值是1,
f(x)=sin(x+π/6)+sin(x-π/6)+2cos^2(x/2)+a,求最小正周期,[-π/2,π/2]上最
求值sin²x+cos²(π/6+x)+1/2sin(2x+π/6)
f(x)=sin^2(x+π/6)+cos^2(x+π/3) 求最大值和最小值
f(x)=2cos(x/2)sin(x/2-π/6) 若x∈(0,π/2) f(x)=-1/6 求cosx的值
已知函数f(x)=sin(x+π/6)+2sin∧2 x/2,求f(x)最大值
若f(x)=2sin(π/6-2x),当f(x)=1/2时,求sin(5π/6+2x)+sin²(π/3+2x
已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos²x(x∈R).1,求函数F(x)的
f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a,求单调递增区间,若在[-π/2,π/2]上最大值和最
已知函数f(x)=sin(2x+6/π)+sin(2x-6/π) (a为常数) (1)求函数最小