x→0时,原极限为1^∞型未定式,利用重要极限lim(x→0) (1+x)^(1/x)=e
lim(x→0) (cosx)^(1/x)
=lim(x→0) [1+(cosx-1)]^{[1/(cosx-1)]*[(cosx-1)/x]}
=e^ lim(x→0)[(cosx-1)/x]
=e^lim(x→0)(-sinx)
=1
x→0时,原极限为1^∞型未定式,利用重要极限lim(x→0) (1+x)^(1/x)=e
lim(x→0) (cosx)^(1/x)
=lim(x→0) [1+(cosx-1)]^{[1/(cosx-1)]*[(cosx-1)/x]}
=e^ lim(x→0)[(cosx-1)/x]
=e^lim(x→0)(-sinx)
=1