Sn+n=2an,S(n-1)+n-1=2a(n-1),相减得an+1=2(a(n-1)+1),又a1=1,所以an=2的n次方-1
bn=(2n+1)2^n,Tn为其前n项和,2Tn为(2n+1)2^(n+1)的前n项和,
2Tn-Tn=(2n+1)2^(n+1)-2(2^2+2^3+.2^n)-3*2=(2n+1)2^(n+1)-2^(n+2)+2
(Tn-2)/ (2n-1) =2^(n+1)>2010,所以取2^(n+1)=2048=2^11,所以n=10
Sn+n=2an,S(n-1)+n-1=2a(n-1),相减得an+1=2(a(n-1)+1),又a1=1,所以an=2的n次方-1
bn=(2n+1)2^n,Tn为其前n项和,2Tn为(2n+1)2^(n+1)的前n项和,
2Tn-Tn=(2n+1)2^(n+1)-2(2^2+2^3+.2^n)-3*2=(2n+1)2^(n+1)-2^(n+2)+2
(Tn-2)/ (2n-1) =2^(n+1)>2010,所以取2^(n+1)=2048=2^11,所以n=10