证明:
连接AE
∵四边形ABCD是平行四边形
∴OB=OD,OA=OC,AD =BC
∵AC=2AB
∴AB=AO
∵E是OB中点
∴AE⊥BO
∵P是AD中点
∴EP=1/2AD(直角三角形斜边中线等于斜边一半)
∵E、F分别是OB、OD中点
∴EF是△OBC的中位线
∴EF=1/2BC
∵AD=BC
∴EP=EF
证明:
连接AE
∵四边形ABCD是平行四边形
∴OB=OD,OA=OC,AD =BC
∵AC=2AB
∴AB=AO
∵E是OB中点
∴AE⊥BO
∵P是AD中点
∴EP=1/2AD(直角三角形斜边中线等于斜边一半)
∵E、F分别是OB、OD中点
∴EF是△OBC的中位线
∴EF=1/2BC
∵AD=BC
∴EP=EF