解题思路:先连接BD,利用相似三角形的判定以及切线的性质定理得出DF=FB,进而分别得出△CDE∽△CBD以及△CDF∽△CBO,再根据相似三角形的性质分别分析即可得出答案.
①连接BD,
∵AB为直径,
∴∠ADB=90°,
∴∠DBE+∠3=90°,
∵∠ABC=90°,
∴∠1+∠DBE=90°,
∴∠1=∠3,
又∵DO=BO,
∴∠1=∠2,
∴∠2=∠3,
∴∠CDB=∠CED,
∵∠DCB=∠ECD,
∴△CDE∽△CBD,
∴CD2=CE•CB,故①CD2=CE•CB正确;
②∵过D作⊙O的切线交BC于点F,
∴FD是⊙O的切线,
∵∠ABC=90°,
∴CB是⊙O的切线,
∴FB=DF,
∴∠FDB=∠FBD,
∴∠1=∠FDE,
∴∠FDE=∠3,
∴DF=EF,
∴EF=FB,
∴EB=2EF,
∵在Rt△ABE中,BD⊥AE,
∴EB2=ED•EA,
∴4EF2=ED•EA,故②4EF2=ED•EA正确;
③∵AO=DO,
∴∠OAD=∠ADO,
假设③∠OCB=∠EAB成立,
则∠OCB=[1/2]∠COB,
∴∠OCB=30°,
而[BO/BC]=[BO/AB]=[1/2],与tan30°=
3
3矛盾,
故③∠OCB=∠EAB不成立,故此选项错误;
④∵∠CDF=∠CBO=90°,
∠DCF=∠OCB,
∴△CDF∽△CBO,
∴[DF/BO]=[CD/BC],
∴[DF/CD]=[BO/CB],
∵AB=BC,
∴[DF/CD]=[BO/CB]=[1/2],
∴DF=[1/2]CD;故④DF=[1/2]CD正确.
综上正确的有①、②、④.
故答案为:①②④.
点评:
本题考点: 圆的综合题.
考点点评: 此题主要考查了圆的切线性质与判定、圆周角定理性质及三角形相似的判定等知识,熟练根据相似三角形的性质得出对应边之间关系是解题关键.