sinα+cosβ=1/5,
(sinα+cosβ)^2=1/25,
(sinα)^2+(cosβ)^2+2sinαcosβ=1/25,∵(sinα)^2+(cosβ)^2=1
∴ 2sinαcosβ=-24/25,sinαcosβ=-12/25
cosα+sinβ=1/3,
2cosαsinβ=-8/9,cosαsinβ=-4/9
sin(α+β)=sinαcosβ+cosαsinβ=-4/9-12/25=-208/225
sinα+cosβ=1/5,
(sinα+cosβ)^2=1/25,
(sinα)^2+(cosβ)^2+2sinαcosβ=1/25,∵(sinα)^2+(cosβ)^2=1
∴ 2sinαcosβ=-24/25,sinαcosβ=-12/25
cosα+sinβ=1/3,
2cosαsinβ=-8/9,cosαsinβ=-4/9
sin(α+β)=sinαcosβ+cosαsinβ=-4/9-12/25=-208/225