①an=(-1)^n*(2n-1),
数列an前40项和=(-1+3)+(-5+7)+……+(-77+79)
=2*20=40.
②1/[(n+1)(n+3)]=(1/2)[1/(n+1)-1+3)],
∴Sn=(1/2)[1/2-1/4+1/3-1/5+1/4-1/6+……+1/(n+1)-1/(n+3)]
=(1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
=5/12-(2n+5)/[2(n+2)(n+3)].
③(1)an=1+2+2^2+……+2^(n-1)=2^n-1.
(2)Sn=2^(n+1)-2-n.