1/(a+1)+1/(b+1)=(a+b+2)/(a+1)(b+1)
1/(c+1)+1=(c+2)/(c+1)
因为 a+b>c
所以(a+b+2)>(c+2)
(a+1)(b+1)=ab+a+b+1
因为a>0 b>0
a+b>c
所以a+b+1>c+1
于是ab+a+b+1>c+1
所以1/(a+m)+1/(b+m)>1/(c+m)+1/m
1/(a+1)+1/(b+1)=(a+b+2)/(a+1)(b+1)
1/(c+1)+1=(c+2)/(c+1)
因为 a+b>c
所以(a+b+2)>(c+2)
(a+1)(b+1)=ab+a+b+1
因为a>0 b>0
a+b>c
所以a+b+1>c+1
于是ab+a+b+1>c+1
所以1/(a+m)+1/(b+m)>1/(c+m)+1/m