求不定积分∫根号下(x^2-a^2) dx

2个回答

  • 答案:(x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C

    令x = a * secz,dx = a * secztanz dz,假设x > a

    ∫ √(x² - a²) dx

    = ∫ √(a²sec²z - a²) * (a * secztanz dz)

    = a²∫ tan²z * secz dz

    = a²∫ (sec²z - 1) * secz dz

    = a²∫ sec³z dz - a²∫ secz dz

    = a²M - a²N

    M = ∫ sec³z dz = ∫ secz dtanz

    = secztanz - ∫ tanz dsecz

    = secztanz - ∫ tanz * (secztanz dz)

    = secztanz - ∫ (sec²z - 1) * secz dz

    = secztanz - M + N

    2M = secztanz + N => N = (1/2)secztanz + N/2

    原式= (a²/2)secztanz + a²N/2 - a²N

    = (a²/2)secztanz - (a²/2)∫ secz dz

    = (a²/2)secztanz - (a²/2)ln|secz + tanz| + C

    = (a²/2)(x/a)[√(x² -a²)/a] - (a²/2)ln|x/a + √(x² - a²)/a| + C

    = (x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C