解题思路:设动圆圆心P,半径为r,利用两圆相切内切,两圆心距和两半径之间的关系列出PA和PB的关系式,正好符合椭圆的定义,利用定义法求轨迹方程即可.
设动圆圆心P(x,y),半径为r,⊙A的圆心为A(-3,0),半径为10,
又因为动圆过点B,所以r=PB,
若动圆P与⊙A相内切,则有PA=10-r=10-PB,即PA+PB=10
由③④得|PA+PB|=10>|AB|=6
故P点的轨迹为以A和B为焦点的椭圆,且a=5,c=3,所以b2=a2-c2=16
所以动员圆心的方程为
x2
25+
y2
16=1.
点评:
本题考点: 轨迹方程.
考点点评: 本题考查两圆的位置关系的应用和定义法求轨迹方程,综合性较强.